FORECASTING THE NUMBER OF POPULATION IN INDONESIA USING ARIMA METHOD

Rika Nur Hikmah(1*),


(1) 
(*) Corresponding Author

Abstract


This study aims to obtain the right forecasting model to predict the population in Indonesia using the Autoregressive Integrated Moving Average (ARIMA) method and to find out the results of forecasting the Indonesian population for the period 2022-2031. This type of research is descriptive with a quantitative approach. The data collection method used is documentation. The data used is quantitative data in the form of data on the population of Indonesia in 2000-2021 obtained from the official website of the Badan Pusat Statistik (BPS). The data analysis technique in this study used the ARIMA method with the help of Minitab 16 software. The results showed that the best model was the ARIMA model (0.2.2) with an MSE value of 2.4390. The results of forecasting the population of Indonesia in the next 10 periods are 277,022 million people, 280,264 million people, 283,509 million people, 286,757 million people, 290,007 million people, 293,261 million people, 296,517 million people, 299,775 million people, 303,037 million people, and 306,301 million people. With the results of this forecast, it is hoped that the government can take appropriate action to address the rate of population growth in Indonesia, for example through the Keluarga Berencana (KB) program, limiting the age of marriage, improving the quality of education, equitable development, and opening up employment opportunities so that the needs of the population are met by good

References


Aditya, C. C. (2019). Peramalan curah hujan di pos hujan ledok nongko kecamatan turi, daerah istimewa yogyakarta dengan metode autoregressive integrated moving average (ARIMA) box-jenkins menggunakan software eviews 10. Yogyakarta: Universitas Sanata Dharma.

Ajunu, Y. I., Achmad, N., & Payu, M. F. (2020). Perbandingan metode autoregressive integrated moving average dan metode double exponential smoothing dari holt dalam meramalkan nilai impor di Indonesia. Jambura Journal of Probability and Statistic, 37-46.

Anami, B. R. (2020). Analisis peramalan permintaan roti untuk menentukan jumlah produksi yang optimal dengan metode moving average dan exponential smoothing pada P-IRT permata bakery - pedagangan tegal. Tegal: Universitas Pancasakti.

Ananda, R., & Fadhli, M. (2018). Statistik pendidikan (teori dan praktik dalam pendidikan). (S. Saleh, Ed.) Medan: CV. Widya Puspita.

Aziz, S., & Sayuti, A. (2017). Penerapan metode ARIMA untuk peramalan pengunjung perpustakaan UIN suka riau. Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9 Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau, 186-193.

Badan Pusat Statistik (BPS). (2022). Kependudukan. From Badan Pusat Statistik: https://bps.go.id

Fejriani, F., Hendrawansyah, M., Muharni, L., Handayani, S. F., & Syaharuddin. (2020). Forecasting peningkatan jumlah penduduk berdasarkan jenis kelamin menggunakan metode ARIMA. Jurnal Kajian, Penelitian dan Pengembangan Pendidikan, 27-36.

Kumila, A., Sholihah, B., Evizia, Safitri, N., & Fitri, S. (2019). Perbandingan metode moving average dan metode naive dalam peramalan data kemiskinan. Jurnal Teori dan Aplikasi Matematika (JTAM), 65-73.

Makridakis, S., Wheelwright, S., & Hyndman, R. (1999). Forecasting methods and applications.

Mardiyah, I., Utami, W. D., Novitasari, D. C., Hafiyusholeh, M., & Sulistiyawati, D. (2021). Analisis prediksi jumlah penduduk di kota pasuruan menggunakan metode ARIMA. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 525-534.

Prasetyono, R. I., & Anggraini, D. (2021). Analisis peramalan tingkat kemiskinan di indonesia dengan model ARIMA. Jurnal Ilmiah Informatika Komputer, 95-110.

Rabil, M. (2017). Peramalan persentase penduduk miskin di provinsi nusa tenggara barat dengan metode double exponential smoothing dan double moving average. Surabaya: Institut Teknologi Sepuluh Nopember.

Rao, S. (2021). A course in time series analysis.

Salwa, N., Tatsara, N., Amalia, R., & Zohra, A. F. (2018). Peramalan harga bitcoin menggunakan metode ARIMA (autoregressive integrated moving average). Jurnal of Data Analysis, 21-31.

Sucipto, L., & Syaharuddin. (2018). Konstruksi forecasting system multi-model untuk pemodelan matematika pada peramalan indeks pembangunan manusia provinsi nusa tenggara barat. Jurnal Ilmiah Teknologi Sistem Informasi, 114-124.

Yunita, T. (2019). Peramalan jumlah penggunaan kuota internet menggunakan metode autoregressive integrated moving average (ARIMA). Jurnal of Mathematics: Theory and Applications, 16-22.


Article Metrics

Abstract view : 0 times

Refbacks

  • There are currently no refbacks.